# List of math symbols (+,-,x,/,=,...) (2023)

List of all mathematical symbols and signs - meaning and examples.

SymbolSymbolnameMeaning / Definitionexample=equal signequality5 = 2+3
5 equals 2+3≠different signinequality5 ≠ 4
5 is not equal to 4≈about the sameapproximationsin(0,01) ≈ 0,01,
xjmeansxis about the samej>strict inequalitybigger then5 > 4
5 is greater than 4<strict inequalityLess than4 < 5
4 is less than 5≥inequalityBetter than or equal5 ≥ 4,
xjmeansxis greater than or equal toj≤inequalityless than or equal to4 ≤ 5,
x ≤ ymeansxis less than or equal toj( )bracketsfirst evaluate the expression in it2 × (3+5) = 16[]square bracketsfirst evaluate the expression in it[(1+2)×(1+5)] = 18+plus signadditive1 + 1 = 2−minus signSubtraction2 − 1 = 1±More lessPlus and minus operations3 ± 5 = 8 or -2±less moreOperations less and less3 ∓ 5 = -2 or 8*asteriskmultiplication2 * 3 = 6×sign timesmultiplication2 × 3 = 6⋅multiplication pointmultiplication2 ⋅ 3 = 6÷Division sign / Obelusclassification6 ÷ 2 = 3/split rodclassification6/2 = 3—horizontal linedivision / fraction ModModulecalculation of the remainder7 ways 2 = 1.Perioddecimal point, decimal separator2,56 = 2+56/100a bEnergyExponent23 = 8a^bCircumflex accentExponent2 ^ 3 = 8√a Quadratwurzel

a a = identical

9= ±33a root cubic3a 3a 3a = identical38= 24a fourth root4a 4a 4a 4a = a416= ±2na n-te Wurzel (Radical)Pron=3,n8= 2%percent1% = 1/10010 % × 30 = 3‰per thousand1‰ = 1/1000 = 0,1%10‰ × 30 = 0,3ppmpro Million1ppm = 1/100000010 ppm × 30 = 0,0003ppbper billion1 ppb = 1/100000000010 ppb × 30 = 3 × 10-7pptpro Billion1ppt = 10-1210 ppt × 30 = 3 × 10-10
SymbolSymbolnameMeaning / Definitionexample∠Storeformed by two rays∠ABC = 30° measured angle ABC = 30° Kugelwinkel AOB = 30°∟right shop= 90°a = 90°°grau1 mal = 360°a = 60°graugrau1 rotation = 360 degreesα = 60 horror'otherBogenminute, 1° = 60'α = 60°59′″double lineBook second, 1′ = 60″α = 60°59′59″ lineinfinite lineABline segmentLine from point A to point B Blitzline from point A The bookArc from point A to point B = 60°⊥uprightvertical lines (90° angle)CABC&Par;parallelparallel linesAB&Par;CD≅congruent withEquivalence of geometric shapes and sizes∆ABC≅ ∆XYZ~similaritysame shapes, not same size∆ABC~ ∆XYZDtriangletriangle shapeΔABC ≅ ΔBCD|x-j|distanceDistance between points x and y|x-j| = 5PiPi-ConstantPi= 3,141592654...

is the ratio of the circumference to the diameter of a circle

SymbolSymbolnameMeaning / Definitionexamplexx-Variablefind unknown valueif 2x= 4, thenx= 2≡equivalenceidentical with≜by definition gleichby definition gleich:=by definition gleichby definition gleich~about the sameweak approximation11 ~ 10≈about the sameapproximationsin(0,01) ≈ 0,01∝proportional toproportional to

jxWhenj=kx, kConstantly

Lemniskatainfinity symbol≪much less thanmuch less than1 ≪ 1000000≫much bigger thanmuch bigger than1000000 ≫ 1( )bracketsfirst evaluate the expression in it2 * (3 + 5) = 16[]square bracketsfirst evaluate the expression in it[(1+2)*(1+5)] = 18{}bracesdefine⌊x⌋floor standrounds the number to the lower integer⌊4,3⌋ = 4⌈x⌉ceiling mountsrounds the number up⌈4,3⌉ = 5x!exclamation markFaculty4! = 1*2*3*4 = 24|x|vertical barsabsolute value| -5 | = 5f(x)function of xmaps x-values ​​to f(x).f(x) = 3x+5(fg)function composition(fg) (x) =f(g(x))f(x)=3x,g(x)=x-1⇒(fg)(x)=3(x-1)(a ,b)open area(a ,b) = {x|a <x<b}x∈ (2,6)[a ,b]closed area[a ,b] = {x|a xb}x∈ [2,6]∆Deltachange / difference∆t=t1-t0∆discriminatoryD=b2- 4ac∑SigmaSummation - sum of all values ​​in the series range∑xEU= x1+x2+...+xn∑∑Sigmadouble sum ∏Capital PiProduct - Product of all values ​​in the series range∏xEU=x1∙x2∙...∙xneand constant/ Euler numbere= 2,718281828...e= border (1+1/x)x,x→∞cConstante de Euler-Mascheroniγ = 0.5772156649...PhiGolden cutGolden section constantPiPi-ConstantPi= 3,141592654...

is the ratio of the circumference to the diameter of a circle

c=Pid= 2⋅Pir
SymbolSymbolnameMeaning / Definitionexample·scorePeeler producta ·b×CruzVector producta ×bABtensor productTensor product of A and BAB domestic product[]square bracketsnumber matrix( )bracketsnumber matrix|A|determiningDetermining the Matrix Aa(A)determiningDetermining the Matrix A||x||double vertical barsnormalATTransportMatrixtransposition(AT)i j= (A)jiAhermitische MatrixTranspose conjugate matrix(A)i j= (A)jiA*hermitische MatrixTranspose conjugate matrix(A*)i j=(A)jiA-1inverse MatrixA A-1=EUClassification(A)array sortingRank of the matrix AClassification(A) = 3weak (she)DimensionsDimension der Matrix Aweak (she) = 3
SymbolSymbolnameMeaning / DefinitionexampleP(A)probability functionProbability of event AP(A) = 0,5P(AB)Probability of events overlappingProbability of events A and BP(AB) = 0,5P(AB)Probability of union eventsProbability of events A or BP(AB) = 0,5P(A|B)conditional probability functionProbability that event A occurs when event B occursP(a | B) = 0,3f(x)Probability Density Function (pdf)P(a xb) =∫ f(x)dxF(x)cumulative distribution function (cdf)F(x) =P(xx)maverage populationaverage of the population valuesm= 10E(x)expected valueExpected value of the random variable XE(x) = 10E(X | Y)conditional expectationExpected value of the random variable X at YE(X | Y=2) = 5Eras(x)varianceVariance of the random variable XEras(x) = 4p2varianceVariance of population valuesp2= 4Standard(x)standard deviationStandard deviation of the random variable XStandard(x) = 2pxstandard deviationStandard deviation value of the random variable Xpx = 2 MedianMean of the random variable x That(x,Y)KovarianzCovariance of the random variables X and YThat(X, Y) = 4reap(x,Y)correlationCorrelation of random variables X and Yreap(X, Y) = 0,6rx,YcorrelationCorrelation of random variables X and Yrx,Y= 0,6∑SomaSummation - sum of all values ​​in the series range ∑∑double sumdouble sum MoAwayValue that occurs most frequently in the populationSRmiddle rangeSR= (xmaximal+xMinimum)/2Mdmedium samplehalf of the population is below this valueQ1lowest/first quartile25% of the population is below this valueQ2Median/second quartile50% of the population are below this value = median of the samplesQ3top/third quartile75% of the population is below this valuexsample meanMean / arithmetic meanx= (2+5+9) / 3 = 5.333s 2sample variancePopulation sample variance estimators 2= 4ssample standard deviationEstimates of the standard deviation of population sampless= 2zxStandard-Scorezx= (x-x)/sxx~distributionfrom XDistribution of the random variable Xx~N(0,3)N(m,p2)normal distributionGaussian distributionx~N(0,3)she(a ,b)even distributionsame probability in interval a,bx~she(0,3)exp(EU)exponential distributionf(x)= λe-λx,x≥0Spiel(c, EU)gamma distributionf(x)= λcxc-1e-λx/C(c),x≥0h2(k)Chi-Square Distributionf(x)= xk/2-1e-x/2/ (2k/2C(k/2) )F(k1, k2)F distributionGarbage can(n,p)binomial distributionf(k)=nCkpk(1-p)n-kPoisson(EU)poison distributionf(k)= λke-EU/k!geom(p)geometric distributionf(k)= p(1-p)kHG(N,k,n)hypergeometric distributionBerna(p)Bernoulli distribution
SymbolSymbolnameMeaning / Definitionexamplen!Facultyn! = 1⋅2⋅3⋅...⋅n5! = 1⋅2⋅3⋅4⋅5 = 120nPkPermutation 5P3=5! / (5-3)! = 60nCk combination 5C3=5!/[3!(5-3)!]=10
SymbolSymbolnameMeaning / Definitionexample{}definea collection of itemsA = {3,7,9,14},
B = {9,14,28}A ∩ BoverlapObjects belonging to set A and set BA ∩ B = {9,14}A ∪ BUnitObjects belonging to either set A or set BA ∪ B = {3,7,9,14,28}A ⊆ BsubsetA is a subset of B. Set A is contained in set B.{9,14,28} ⊆ {9,14,28}A ⊂ Bproper subset / strict subsetA is a subset of B, but A is not equal to B.{9,14} ⊂ {9,14,28}A ⊄ Bnot subdivideSet A is not a subset of set B{9,66} ⊄ {9,14,28}A ⊇ BSuper recoveryA is a superset of B. Set A contains set B{9,14,28} ⊇ {9,14,28}A ⊃ Bproper superset / strict supersetA is a superset of B, but B is not equal to A.{9,14,28} ⊃ {9,14}A ⊅ Bnot outstandingSet A is not a superset of set B{9,14,28} ⊅ {9,66}2Astrength setall subsets of A strength setall subsets of AA = Bequalityboth sets have the same membersA={3,9,14},
B={3,9,14},
A=BAccompleteall objects that do not belong to set AA\Brelative complementObjects owned by A and not BA = {3,9,14},
B = {1,2,3},
AB = {9,14}ABrelative complementObjects owned by A and not BA = {3,9,14},
B = {1,2,3},
AB = {9,14}A ∆ Bsymmetrical differenceObjects that belong to A or B but not to their intersectionA = {3,9,14},
B = {1,2,3},
A ∆ B = {1,2,9,14}A ⊖ Bsymmetrical differenceObjects that belong to A or B but not to their intersectionA = {3,9,14},
B = {1,2,3},
A ⊖ B = {1,2,9,14}a ∈Aelement of,
heardset associationA={3,9,14}, 3 ∈ Ax∉Anot part ofno clear associationA={3,9,14}, 1 ∉ A(a ,b)orderly pairCollection of 2 elementsA×BCartesian productSet of all ordered pairs of A and BA×B = {(a ,b)|a ∈A ,b∈B}|A|cardinalitythe number of elements in set AA={3,9,14}, |A|=3#Acardinalitythe number of elements in set AA={3,9,14}, #A=3|Outside verticalwith itA={x|3<x<14} Aleph-Nullinfinite cardinality of the set of natural numbers alef-umCardinality of the set of countable ordinal numbersÖempty setØ = { }C = {Ø} Universal SetSet of all possible values 0natural numbers / set of integers (with zero) 0= {0,1,2,3,4,...}0 ∈ 0 1natural numbers / sets of integers (no zero) 1= {1,2,3,4,5,...}6 ∈ 1 set of integers = {...-3,-2,-1,0,1,2,3,...}-6 ∈  set of rational numbers = {x|x=a /b,a ,b }2/6 ∈  Many real numbers = {x| -∞ <x<∞}6,343434∈  set of complex numbers = {z|z=a+Bi, -∞<a <∞, -∞<b<∞}6+2EU SymbolSymbolnameMeaning / Definitionexampleeex j^errors / caretsex^j&and commercialex&j+moreorx+j∨reverse circumflexorxj|vertical lineorx|jx'single quoteno - refusalx'xBarrano - refusalx¬Notno - refusal¬x!exclamation markno - refusal!x⊕circulated more / oplusor exclusively - xorxj~torefusal~x⇒it implies⇔equivalent toif and only if (if)↔equivalent toif and only if (if)∀for all∃exists∄is not present∴Therefore∵Because since
SymbolSymbolnameMeaning / Definitionexample Borderlimit of a functioneEpsilonrepresents a very small number close to zeroe 0eand constant/ Euler numbere= 2,718281828...e= border (1+1/x)x,x→∞j'derivedDerivation - Lagrangian notation(3x3)' = 9x2j''second derivativeDerived from Derivatives(3x3)'' = 18xj(n)nth derivativen-fold derivative(3x3)(3)= 18 derivedDerivation - Leibniz notationd(3x3)/dx= 9x2 second derivativeDerived from Derivativesd2(3x3)/dx2= 18x nth derivativen-fold derivative derivation of timeDerivative with respect to time - Newton notation second derivative of timeDerived from DerivativesDxjderivedDerivation - Euler notationDx2jsecond derivativeDerived from Derivatives partial derivative∂(x2+j2)/∂x= 2xIntegral-opposite of derivation∫f(x)dx∫∫DoppelintegralIntegration of the function of 2 variables∫∫f(x,y)dxdy∫∫∫integral triplaIntegration of the function of 3 variables∫∫∫f(x,y,z)dxdydz∮closed contour/line integral∯closed surface integral∰closed volume integral[a ,b]closed area[a ,b] = {x|a xb}(a ,b)open area(a ,b) = {x|a <x<b}EUimaginary unitEU≡ √-1z= 3 + 2EUz*complex conjugatedz=a +Biz*=a -Biz*= 3 - 2EUzcomplex conjugatedz=a +Biz=a -Biz= 3 - 2EUPeriod (z)Real part of a complex numberz=a +Bi→ Re(z)=a Re(3 - 2EU) = 3I am(z)imaginary part of a complex numberz=a +Bi→ I am (z)=bi am 32 years oldEU) = -2|z|Absolute value/magnitude of a complex number|z| = |a +Bi| = &Square;(a 2+b2)|3 - 2EU| = 13Arg(z)Argument of a complex numberThe angle of the ray in the complex planearg(3 + 2EU) = 33,7°∇nabla / delGradient/divergence operator∇f(x,j,z) Vector unit vectorx*jfoldingj(t) =x(t) *h(t) Laplace-TransformationF(s) = {f(t)} Fourier-Transformationx(oh) = {f(t)}dDelta Function∞Lemniskatainfinity symbol
NameWestern ArabicRomaneastern arabHebrewNull0٠11EU١אtwo2II٢בthree3III٣גfour44٤דcinco5v٥הsix6VIöוseven7VII٧זact8VIII٨חnew9IX٩טdez10x١٠יour11XI١١יאsnooze12XII١٢יבthirteen13XIII١٣יגfourteen14XIV١٤ידfifteenfifteenXV١٥טוsixteen16XVI١٦טזseventeen17XVII١٧יזeighteen18XVIII١٨יחnineteen19XIX١٩יטtwenty20XX٢٠כthirty30XXX٣٠לFourty40GG٤٠מfifty50EU٥٠נsixty60LX٦٠סseventy70LXX٧٠עeighty8080٨٠פninety90XC٩٠צcem100C١٠٠ק
capital letterlowercaseGreek letter nameEnglish equivalentpronunciation of the letter name Aa Alfaa AlphaBbBetabBetaCcGamagnoDdDeltadDeltaEeEpsiloneEpsilonGgZetazze-taAaEheh-taºEUManyºThe impressionEUEUWhomEUWhomkkKappakyou stillEUEULambdaEUlam-daMmnomm-yooNnNotnNotxxXIxx-eeAÖOmikronÖo-mi-c-ronPiPiPippayeeRrRhorLineSpSigmasSigmaTtSimtErasYsheYpsilonsheoo-psi-lonPhiPhiPhiPhTaxaxhChiCHe-eePSppsiPSp-verOhohOmegaÖOmega
numberRoman numeral0not defined1EU2II3III445v6VI7VII8VIII9IX10x11XI12XII13XIII14XIVfifteenXV16XVI17XVII18XVIII19XIX20XX30XXX40GG50EU60LX70LXX808090XC100C200CC300CCC400CD500D600direct current700DCC800DCCC900CM1000M5000v10000x50000EU100000C500000D1000000M
Top Articles
Latest Posts
Article information

Author: Ouida Strosin DO

Last Updated: 11/06/2022

Views: 6441

Rating: 4.6 / 5 (56 voted)

Author information

Name: Ouida Strosin DO

Birthday: 1995-04-27